聯系我們
電 話:+86-0335-5084532
傳 真:+86-0335-5185020
郵 箱:zichuangongsi@126.com
地 址:秦皇島市山海關經濟技術開發區船廠路
電 話:+86-0335-5084532
傳 真:+86-0335-5185020
郵 箱:zichuangongsi@126.com
地 址:秦皇島市山海關經濟技術開發區
船廠路
網 址:www.jakesimplements.com
復合材料與金屬、高聚物、陶瓷并稱為四大材料。復合材料工業水平已成為衡量其科技與經濟實力標志之一。先進復合材料是國家安全和國民經濟具有競爭優勢的源泉。在纖維增強復合材料領域中,環氧樹脂大顯身手。它與高性能纖維PAN基碳纖維、S或E玻璃纖維、芳綸纖維、聚乙烯纖維、玄武巖纖維復合,便成為不可替代的重要的基體材料和結構材料,廣泛運用在電子電力、航天航空、運動器材、建筑補強、壓力管道、化工防腐等六個領域。
一、復合材料使用的增強纖維
復合材料所用各種纖維材料性能比較中,僅玻璃纖維就比金屬材料的比強度、比模量分別提高了540%和31%,碳纖維的提高則更為顯著。據文獻報道,由鍵能和鍵密度計算得出的單晶石墨理論強度高達150GPa。因此碳纖維的進一步開發潛力是十分巨大的。
開發碳纖維復合材料的其他應用大有作為,如飛機及高速列車剎車系統、民用飛機及汽車復合材料結構件、高性能碳纖維軸承、風力發電機大型葉片、體育運動器材(如滑雪板、球拍、漁桿)等。隨著碳纖維生產規模的擴大和生產成本的逐步下降,在增強混凝土、新型取暖裝置、新型電極材料乃至日常生活用品中的應用也必將迅速擴大。我國為配合北京奧運會,擬大力開發新型CFRP建材及與環保,日用消費品相關的高科技CFRP新市場。
碳纖維是一種高強度、高模量材料,理論上大多數有機纖維都可被制成碳纖維,實際用作碳纖維原料的有機纖維主要有三種:粘膠纖維、瀝青纖維、聚丙烯腈纖維。當前固體火箭發動機結構件用的碳纖維大多由聚丙烯腈纖維制成。
二、航空航天用樹脂基復合材料
據有關資料報道,航天飛行器的質量每減少1千克,就可使運載火箭減輕500千克,而一次衛星發射費用達幾千萬美元。高成本的因素,使得結構材料質輕,高性能顯得尤為重要。利用纖維纏繞工藝制造的環氧基固體發動機罩耐腐蝕、耐高溫、耐輻射,而且密度小、剛性好、強度高、尺寸穩定。再如導彈彈頭和衛星整流罩、宇宙飛船的防熱材料、太陽能電池陣基板都采用了環氧基及環氧酚醛基纖維增強材料來制造。出于航天航空飛行及其安全的考慮所需,作為結構材料應具有輕質高強、高可靠性和穩定性,環氧碳纖維復合材料成為不可缺少的材料。
高性能環氧復合材料采用的增強材料主要是碳纖維(CF)以及CF和芳綸纖維(K-49)或高強玻璃纖維(S-GF)的混雜纖維。所用基體材料環氧樹脂約占高性能復合材料樹脂用量的90%左右。高性能復合材料成型工藝多采用單向預浸料干法鋪層,熱壓罐固化成型。高性能環氧復合材料已廣泛應用在各種飛機上。以美國為例,20世紀60年代就開始應用硼/環氧復合材料作飛機蒙皮、操作面等。由于硼纖維造價太貴,70年代轉向碳/環氧復合材料,并得到快速發展。大致可分為三個階段。第一階段應用于受力不大的構件,如各類操縱面、舵面、擾流片、副翼、口蓋、阻力板、起落架艙門、發動機罩等次結構上。第二階段應用于承力大的結構件上,如安定面、全動平尾和主受力結構機翼等。第三階段應用于復雜受力結構,如機身、中央翼盒等。一般可減重20%~30%。目前軍機上復合材料用量已達結構重量的25%左右,占到機體表面積的80%。高性能環氧復合材料在國外軍機和民機上的應用實例較多。
我國于1978年首次將碳-玻/環氧復合材料用于強-5型飛機的進氣道側壁。據有關會專家介紹,20世紀80年代在多種軍機上成功地將C/EP用作垂直安定面、舵面、全動平尾和機翼受力盒段壁板等主結構件。
宇航工業中除燒蝕復合材料外,高性能復合材料應用也很廣泛。如三叉戟導彈儀器艙錐體采用C/EP后減重25%~30%,省工50%左右。還用作儀器支架及三叉戟導彈上的陀螺支架、彈射筒支承環,彈射滾柱支架、慣性裝置內支架和電池支架等55個輔助結構件。由于減重,使射程增加342km。德爾塔火箭的保護罩和級間段亦由C/EP制造。美國衛星和飛行器上的天線、天線支架、太陽能電池框架和微波濾波器等均采用C/EP定型生產。國際通訊衛星V上采用C/EP制作天線支撐結構和大型空間結構。宇航器“空中旅行者”的高增益天線次反射器和蜂窩夾層結構的內外蒙皮采用了K-49/EP。航天飛機用Nomex蜂窩C/EP復合材料制成大艙門,C/EP尾艙結構壁板等。
航天高新技術對航天先進復合材料的要求越來越高,促使先進復合材料向幾個方向發展:
高性能化,包括原材料高性能化和制品高性能化。如用于航空航天產品的碳纖維由前幾年普遍使用的T300已發展到T700、T800甚至T1000。而一般環氧樹脂也逐步被韌性更好的、耐溫更高的增韌環氧樹脂、雙馬樹脂和聚酰亞胺樹脂等取代;對復合材料制品也提出了輕質、耐磨損、耐腐蝕、耐低溫、耐高溫、抗氧化等要求。
低成本化,低成本生產技術包括原材料、復合工藝和質量控制等各個方面。
多功能化,航天先進復合材料正由單純結構型逐步實現結構與功能一體化,即向多功能化方向發展。
碳纖維增強復合材料(CFRP)以其輕質高強、耐高溫、抗腐蝕、熱力學性能優良等特點,廣泛用作結構材料及耐高溫抗燒蝕材料,是其它纖維增強復合材料所無法比擬的。
三、趨勢
復合材料是未來發展我國航空航天工程有前途的材料,在未來復合材料的的研制中必須在抗拉強度、蠕變阻力、低和高循環疲勞、耐高溫腐蝕和耐沖擊損傷等方面滿足要求。提高復合材料高耐熱性、強度和韌性是發展復合材料的關鍵,今后在耐高溫材料上應重點研制結構陶瓷、陶瓷復合材料和微疊層復合材料。同時要在研究低成本復合材料的制造技術上加大力度。
飛機上的復合材料主要是指碳纖維復合材料。
飛機結構件大規模使用復合材料,是現代飛機制造史上的一次革命性變化。它使飛機重量更輕、強度更高、耐疲勞耐腐蝕性更好,而且復合材料中的高強度碳纖維進行大規模工業化生產后,可以使飛機的制造成本更低。同時在計算機技術、激光、C掃描等先進科技的支持下,復合材料制造飛機結構件的質量能夠更加可靠地保證飛機的安全性。
而在我國,復合材料主要用在飛機非結構件上,在主結構上的應用還需要進一步預研。這就好比是空客、波音已經能用鋼筋水泥造房子,而我國僅掌握全套的用“秦磚漢瓦”造房子的辦法,現在才開始學著使用鋼筋水泥。更要命的是,用于飛機的復合材料原材料我國現在還需要進口,尤其是像高等級碳纖維等這樣廣泛應用的飛機復合材料原材料,我國還不能生產。
文章來源: 復材應用技術,材圖